reduce (:T)
Syntax
reduce(func, X, [init], [consistent=false])
or
[init] <operator>:T X (when consistent = false)
or
[init] <operator>:TC X (when consistent = true)
or
reduce:T(X, [init], [consistent=false])
Arguments
func is a binary function.
When func is a unary function, X can be a non-negative integer, a unary function, or a NULL value. init must be specified, which is the parameter of func.
When func is a binary function, X can be vector/matrix/table. init is the initial value.
When func is a ternary function, X must be a tuple with 2 elements, representing the last two parameters of func.
consistent is a Boolean value. The default value is false, indicating that the data type of the result is determined by each calculation result. Otherwise, the data type of the result is the same as the data type of the first calculation result. Note that if the data forms of each result are inconsistent, consistent can only be specified as false. Otherwise, an error will be reported.
Details
The function of reduce
is the same as accumulate
. Unlike the template accumulate
that returns result of each iteration, the template reduce
outputs only the last result. Refer to accumulate (:A) for more information.
result=<function>(init,X[0]);
for(i:1~size(X)){
result=<function>(result, X[i]);
}
return result;
Examples
When func is a unary function:
$ def func1(x){
$ if(x<5){
$ return x*3
$ }
$ else{
$ return 6
$ }
$ }
$ reduce(func1, 5, 1)
6
$ reduce(func1,NULL,1)
6
$ def condition(x){
$ return x<9
$ }
$ reduce(func1, condition, 1)
9
When func is a binary function, and X is a vector:
$ reduce(mul, 1..10);
3628800
// factorization of 10
// the corresponding accumulate template for the operation above
$ *:A 1..10;
[1,2,6,24,120,720,5040,40320,362880,3628800]
$ 2 *:T 1..10;
7257600
$ def f1(a,b):a+log(b);
$ reduce(f1, 1..5, 0);
4.787492
reduce
on a matrix:
$ x=1..12$3:4;
$ x;
col1 |
col2 |
col3 |
col4 |
---|---|---|---|
1 |
4 |
7 |
10 |
2 |
5 |
8 |
11 |
3 |
6 |
9 |
12 |
$ + :T x;
[22,26,30]
When func is a ternary function:
$ def fun3(x,y,z){
$ return x+y+z
$ }
$ reduce(fun3,[[1,2,3],[10,10,10]],5)
41